Non-existence of homogeneous Einstein metrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Examples of Homogeneous Einstein Metrics

A Riemannian metric is said to be Einstein if the Ricci curvature is a constant multiple of the metric. Given a manifold M , one can ask whether M carries an Einstein metric, and if so, how many. This fundamental question in Riemannian geometry is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem, the question is intractible. It becomes more manageable in the homo...

متن کامل

Existence of Einstein metrics on Fano manifolds

This is largely an expository paper and dedicated to my friend J. Cheeger for his 65th birthday. The purpose of this paper is to discuss some of my works on the existence of Kähler-Einstein metrics on Fano manifolds and some related topics. I will describe a program I have been following for the last twenty years. It includes some of my results and speculations which were scattered in my previo...

متن کامل

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

On energy functionals and the existence of Kähler-Einstein metrics

We prove that the existence of a Kähler-Einstein metric on a Fano manifold is equivalent to the properness of the energy functionals defined by Bando, Chen, Ding, Mabuchi and Tian on the set of Kähler metrics with positive Ricci curvature. We also prove that these energy functionals are bounded from below on this set if and only if one of them is. 0 Setup. Let (M, J) be a connected compact clos...

متن کامل

Obstructions to the Existence of Sasaki–Einstein Metrics

We describe two simple obstructions to the existence of Ricci–flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki–Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2005

ISSN: 0010-2571

DOI: 10.4171/cmh/8